
Neural-Symbolic Integration:
A Compositional Perspective

Feb 16, 2020 Efi Tsamoura, SAIC-Cambridge

2

State of the art

Imposes restrictions on the syntax and the semantics of the logical theories:

 [5] translates acyclic or propositional theories to neural networks.

 [6] replaces logical computations by differentiable functions.

 [2,4] adopt theories with interpretations taking continuous values, e.g., fuzzy logic, probabilistic logic.

Depends on the semantics and the complexity of the specific theory.

3

Objectives

Develop a compositional framework in which users can plug in any logical theory and

any neural component of interest.

Benefits:

 Control the inference cost.

 Control the expressive power of the theory (e.g., support for non-monotonic theories not supported by

PLP-based neural-symbolic frameworks as [2]).

 Support for techniques coming from the learning theory community (e.g., implicit learning [9]).

4

Contributions

A framework supporting those properties [1].

Beyond the benefits mentioned before, compositionality allows integrating in a natural

way the predictions of the neural component during the training process as opposed to

prior art, e.g., [2].

Compositionality is achieved via symbolic modules offering the following interfaces:

 deduction, or forward inference; and

 abduction, through which one computes (i.e., abduces) the inputs to the symbolic module that would d

educe a given output.

5

Setting

Integrate a symbolic module adopting a theory 𝑇 and computing a function 𝑠(⋅) on top

of a neural module computing a function 𝑛(⋅).

𝑛:𝒳 → 0,1 𝑘 𝑟: 0,1 𝑘 → 𝒜

𝑠:𝒜 → 𝒪

Neural module Symbolic module
Translator

The translator respects the semantics of the theory, e.g., if 𝑇 is probabilistic, then each f

act is provided along with its confidence/probability.

Assumptions:

 closed-world assumption;

 the semantics of the neural outputs is known.

6

Setting: inference

𝑛 𝑟

𝑠

Neural module Symbolic module
Translator

𝑛 𝑥 = 𝜔 𝑥 𝑟 𝜔 = 𝐴 deduce 𝑇, 𝐴

7

Setting: training

𝑛 𝑟

𝑠

Neural module Symbolic module
Translator

𝑥 𝑜

Goal: given training samples of the form (𝑥, 𝑜), train the neural component.

8

Example: chess

safe

Given an image of a chessboard and the status of the black king, learn the weights of t

he neural component.

9

Training: high-level idea

Given the target label 𝑜 compute a formula representing what the neural component sh

ould output in order to get the desired output after reasoning.

The computation of the formula is done via abduction

Use the computed formula to train the neural component.

𝑛 𝑟

𝑠

Neural module Symbolic module
Translator

𝑥 𝑜 𝜙

abduce 𝑇, 𝑜

10

Training: how do the training formulas look like?

If we want the output to be safe, the logical component should be provided with the f

ollowing chessboards:

♚

♘

♙

♚

♖

♘

♚

♕ ♗

at(b(k), (2,3))

at(w(q), (1,1)) at(w(b), (3,1))

at(b(k), (2,3)) ∧ at(w(q), (1,1)) ∧ at(w(b), (3,1)) ∧ at(empty, (1,2)) ∧ … ∧ at(empty, (3,2))

 ∨

∨

at(empty, (3,2))

at(w(b), (2,3)) ∧ at(w(r), (1,1)) ∧ at(w(n), (3,1)) ∧ at(empty, (1,2)) ∧ … ∧ at(empty, (3,2))

at(w(b), (2,3)) ∧ at(w(p), (1,1)) ∧ at(w(n), (2,2)) ∧ at(empty,(1,2)) ∧ … ∧ at(empty, (3,2))

11

Abduction

Given:

 a set of rules P

 a set of abducible predicates A– data that is given as part of the input to the theory–

 a set of integrity constraints IC

 a user query Q

find a formula Δ over of facts over A, such that

 𝑃 ∪ Δ ⊨ 𝑄

 𝑃 ∪ Δ ⊨ IC

12

Training the neural component using formulas

The loss function must show how close –semantically– are the outputs of the nets to th

e formula we found via abduction.

We use weighted model counting [11].

13

Weighted model counting

Consider a propositional formula 𝜙, where each variable X in 𝜙 is associated with a wei

ght w(X) in [0,1].

A satisfying assignment 𝜎 of 𝜙 is a mapping of the variables in 𝜙 to ⊤ or ⊥, that makes

𝜙 true.

The weight of a satisfying assignment 𝜎 is defined as

 𝑤(𝑋)

𝑋∈𝜙|𝑋=⊤

× 1−𝑤 𝑋

𝑋∈𝜙|𝑋=⊥

The weighted model count of 𝜙 is the sum of the weights of all satisfying assignments of 𝜙.

14

Weighted model counting

𝜙 = 𝑋 ∨ ¬𝑌
𝑤 = 𝑋 ↦ 0.9, 𝑌 ↦ 0.1

X Y 𝜙 Weight of assignment

0 0 1 1 − 𝑤 𝑋 × 1 − 𝑤 𝑌 = 0.1 × 0.9

0 1 0

1 0 1 𝑤 𝑋 × 1 − 𝑤 𝑌 = 0.9 × 0.9

1 1 1 𝑤 𝑋 × 𝑤 𝑌 = 0.9 × 0.1

𝜙 = 𝑋 ∨ ¬𝑌
𝑤 = 𝑋 ↦ 0.1, 𝑌 ↦ 0.9

X Y 𝜙 Weight of assignment

0 0 1 1 − 𝑤 𝑋 × 1 − 𝑤 𝑌 = 0.9 × 0.1

0 1 0

1 0 1 𝑤 𝑋 × 1 − 𝑤 𝑌 = 0.1 × 0.1

1 1 1 𝑤 𝑋 ×𝑤 𝑌 = 0.1 × 0.9

15

Training: an example

Consider the formula at(b(k), (2,3)) ∧ at(w(q), (1,1)) ∧ at(w(b), (3,1)).

• Virtually create one network for each cell

• Associate each net output with a unique
Boolean variable.

• The formula becomes X1 ∧ Y2 ∧ Z9

• Set the weight of each net output as the
weight of the corresponding Boolean vari
able.

• The loss is the negative logarithm of the
weighted model count of X1 ∧ Y2 ∧ Z9.

at(b(k), (2,3)) ↦ X1

↦ X2

↦ X9

at(w(q),(2,3))

at(w(b),(2,3))

at(b(k), (1,1)) ↦ Y1

↦ Y2

↦ Y9

at(w(q),(1,1))

at(w(b),(1,1))

at(b(k), (3,1)) ↦ Z1

↦ Z2

↦ Z9

at(w(q),(3,1))

at(w(b),(3,1))

ce
ll

(2
,3

)
ce

ll
(1

,1
)

ce
ll
 (
3
,1

)

16

Training: overview

Loss
computation

Differentiatio
n

𝛻L

𝝎

Abduction

Background
knowledge

L

𝜙 = abduce 𝑇, 𝑜
safe

17

Training: neural-guided abduction

Abduction was done so far based only on the target label.

We could consider the neural predictions to narrow down the abductive proofs.

Benefits: improve training efficiency.

18

Neural-guided abduction: example

Recall that when provided with the training pair the proofs were computed b

ased only on the training label (i.e., safe):

However, if the neural component is confident in recognizing non-empty cells, i.e., it “sees”:

then we can exclude all the abductive proofs not abiding this pattern.

, safe

♚

♘

♙

♚

♖

♘

♚

♕ ♗

19

Neural-guided abduction: extensions

To support neural-guided abductio

n, we need to:

 establish a communication channe

l between the neural and the logic

al components;

 extend abduction to deal with nois

y or inconsistent neural predictions

via proximity functions.

saf
e

Loss
Comp.

Differentia
tion

𝛻L

𝝎

Abduction

Background
knowledge

L

𝜙

Neural
predictions

20

Empirical evaluation

Benchmarks from [6], [2] and chess scenario.

Competitors: DeepProbLog [2], ABL [12] and NeurASP [13].

21

State of the art

DeepProbLog.

 Reduces the problem to learning the parameters of probabilistic logic programs.

NeurASP

 Reduces the problem to learning the parameters of probabilistic answer set pro

grams.

ABL

 Computes the neural predictions for each element.

 Obscures subsets of the neural predictions.

 Abduces the obscured predictions so that the resulting predictions are consiste

nt with the background knowledge.

 Trains the neural component using obscured and abduced neural predictions.

22

Empirical evaluation

Results using 3000 training samples and 3 epochs.

23

NeuroLog: efficient caching mechanism

Efficient caching:
• Compute an circuit for e

ach abductive formula.
• Use the compute circuit

to compute the loss.
• The number of different

circuits equals the numb
er of different labels.

Loss
computation

Differentiation
𝛻L

𝝎

Abduction

Background
knowledge

L

abduce 𝑇, 𝑜
safe

⊗

⊗

Arithmetic circuit
computation

24

NeuroLog vs DeepProbLog and NeurASP

ADD2x2 OPERATOR2x2 APPLY2x2 DBA(n)

MATH(5) MEMBER(n) PATH(n) CHESS-?(n)

Results using 3000 training samples and 3 epochs.

25

NeuroLog vs ABL

ADD2x2 APPLY2x2 DBA(n) MATH(3)

MATH(5) MEMBER(n) CHESS-BSV(n) CHESS-ISK(n)

Results using 3000 training samples and 3 epochs.

26

Summary

Compositional: users can plug in nets and logic theories of interest, e.g., non-monotoni

c, probabilistic, action.

Natural integration of neural predictions during the training process.

Outperforms state of the art in terms of training time and efficiency.

27

References

[1] Tsamoura, E. et al. 2021. Neural-Symbolic Integration: A Compositional Perspective. In AAAI, to appear.

[2] Manhaeve, R. et al. 2018. DeepProbLog: Neural Probabilistic Logic Programming. In NeurIPS, 3749–3759.

[3] Van Krieken, E. et al. 2019. Semi-Supervised learning using differentiable reasoning. Journal of Applied Logics, Vol. 6 No. 4.

[4] Donadello, I. et al. 2017. Logic tensor networks for semantic image interpretation. In IJCAI, 1596–1602.

[5] d’Avila Garcez, A. S. et al. 2002. Neural-symbolic learning systems: foundations and applications. Perspectives in neural computing.

[6] Gaunt, A. L. et al. 2017. Differentiable Programs with Neural Libraries. In ICML, 1213–1222.

[7] Zhu, Y. et al. 2014. Reasoning about Object Affordances in a Knowledge Base Representation. In ECCV, 408–424.

[8] Valiant, L. G. 2000. Robust logics. Artificial Intelligence, Vol. 117, 231–253.

[9] Juba, B. 2013. Implicit Learning of Common Sense for Reasoning. In IJCAI, 939–946.

[10] Kakas, A. C. 2017. Abduction. Encyclopedia of Machine Learning and Data Mining, 1–8. Boston, MA: Springer US.

[11] Chavira, M. et al. 2008. On probabilistic inference by weighted model counting. Artificial Intelligence, Vol. 172, No. 6, 772–799.

[12] Dai, W.-Z. et al. 2019. Bridging Machine Learning and Logical Reasoning by Abductive Learning. In NeurIPS, 2815–2826.

[13] Yang, Z. et al. 2020. NeurASP: Embracing Neural Networks into Answer Set Programming. In IJCAI,1755–1762.

