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State of the art  

Imposes restrictions on the syntax and the semantics of the logical theories:  

 [5] translates acyclic or propositional theories to neural networks. 

 [6] replaces logical computations by differentiable functions.  

 [2,4] adopt theories with interpretations taking continuous values, e.g., fuzzy logic, probabilistic logic.  

 

Depends on the semantics and the complexity of the specific theory. 
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Objectives 

Develop a compositional framework in which users can plug in any logical theory and 

any neural component of interest.  

 

Benefits:  

 Control the inference cost. 

 Control the expressive power of the theory (e.g., support for non-monotonic theories not supported by 

PLP-based neural-symbolic frameworks as [2]). 

 Support for techniques coming from the learning theory community (e.g., implicit learning [9]).   
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Contributions 

A framework supporting those properties [1]. 

 

Beyond the benefits mentioned before, compositionality allows integrating in a natural 

way the predictions of the neural component during the training process as opposed to 

prior art, e.g., [2].    

 

Compositionality is achieved via symbolic modules offering the following interfaces:  

 deduction, or forward inference; and  

 abduction, through which one computes (i.e., abduces) the inputs to the symbolic module that would d

educe a given output.  
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Setting 

Integrate a symbolic module adopting a theory 𝑇 and computing a function 𝑠(⋅) on top 

of a neural module computing a function 𝑛(⋅).  

𝑛:𝒳 → 0,1 𝑘 𝑟: 0,1 𝑘 →  𝒜 
 

𝑠:𝒜 → 𝒪 

Neural module Symbolic module 
Translator 

The translator respects the semantics of the theory, e.g., if 𝑇 is probabilistic, then each f

act is provided along with its confidence/probability.    

 

Assumptions: 

 closed-world assumption; 

 the semantics of the neural outputs is known.  
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Setting: inference 
 

𝑛 𝑟 
 

𝑠 

Neural module Symbolic module 
Translator 

𝑛 𝑥 =  𝜔 𝑥 𝑟 𝜔 = 𝐴 deduce 𝑇, 𝐴  
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Setting: training 

𝑛 𝑟 
 

𝑠 

Neural module Symbolic module 
Translator 

𝑥 𝑜 

Goal: given training samples of the form (𝑥, 𝑜), train the neural component.   
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Example: chess 

safe 

Given an image of a chessboard and the status of the black king, learn the weights of t

he neural component.  
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Training: high-level idea 

Given the target label 𝑜 compute a formula representing what the neural component sh

ould output in order to get the desired output after reasoning.   

 

The computation of the formula is done via abduction 

 

Use the computed formula to train the neural component. 

𝑛 𝑟 
 

𝑠 

Neural module Symbolic module 
Translator 

𝑥 𝑜 𝜙 

abduce 𝑇, 𝑜  



10 

Training: how do the training formulas look like? 

If we want the output to be safe, the logical component should be provided with the f

ollowing chessboards:   

♚ 

♘ 

♙ 

♚ 

♖
  

♘ 

♚ 

♕ ♗ 

at(b(k), (2,3)) 

at(w(q), (1,1)) at(w(b), (3,1)) 

at(b(k), (2,3)) ∧ at(w(q), (1,1)) ∧ at(w(b), (3,1)) ∧ at(empty, (1,2)) ∧ … ∧ at(empty, (3,2))    
 
 ∨ 

∨ 

at(empty, (3,2)) 

at(w(b), (2,3)) ∧ at(w(r), (1,1))  ∧ at(w(n), (3,1)) ∧ at(empty, (1,2)) ∧ … ∧ at(empty, (3,2))   
 
at(w(b), (2,3)) ∧ at(w(p), (1,1)) ∧ at(w(n), (2,2)) ∧ at(empty,(1,2)) ∧ … ∧ at(empty, (3,2))   
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Abduction 

Given: 

 a set of rules P 

 a set of abducible predicates A– data that is given as part of the input to the theory–  

 a set of integrity constraints IC   

 a user query Q  

 

find a formula Δ over of facts over A, such that 

 𝑃 ∪ Δ ⊨ 𝑄 

 𝑃 ∪ Δ ⊨ IC   
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Training the neural component using formulas 

The loss function must show how close –semantically– are the outputs of the nets to th

e formula we found via abduction.      

 

We use weighted model counting [11].  
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Weighted model counting 

Consider a propositional formula 𝜙, where each variable X in 𝜙 is associated with a wei

ght w(X) in [0,1]. 

 

A satisfying assignment 𝜎 of 𝜙 is a mapping of the variables in 𝜙 to ⊤ or ⊥, that makes 

𝜙 true.  

 

The weight of a satisfying assignment 𝜎 is defined as  

 

 𝑤(𝑋)

𝑋∈𝜙|𝑋=⊤

×  1−𝑤 𝑋

𝑋∈𝜙|𝑋=⊥

 

 

The weighted model count of 𝜙 is the sum of the weights of all satisfying assignments of 𝜙.  
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Weighted model counting 

𝜙 = 𝑋 ∨ ¬𝑌 
𝑤 = 𝑋 ↦ 0.9, 𝑌 ↦ 0.1  

 

X Y 𝜙 Weight of assignment   

0 0 1 1 − 𝑤 𝑋 × 1 − 𝑤 𝑌 = 0.1 × 0.9   

0 1 0 

1 0 1 𝑤 𝑋 × 1 − 𝑤 𝑌 = 0.9 × 0.9 

1 1 1 𝑤 𝑋 × 𝑤 𝑌 = 0.9 × 0.1 

𝜙 = 𝑋 ∨ ¬𝑌 
𝑤 = 𝑋 ↦ 0.1, 𝑌 ↦ 0.9  

 

X Y 𝜙 Weight of assignment  

0 0 1 1 − 𝑤 𝑋 × 1 − 𝑤 𝑌 = 0.9 × 0.1   

0 1 0 

1 0 1 𝑤 𝑋 × 1 − 𝑤 𝑌 = 0.1 × 0.1 

1 1 1 𝑤 𝑋 ×𝑤 𝑌 = 0.1 × 0.9 
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Training: an example 

Consider the formula at(b(k), (2,3)) ∧ at(w(q), (1,1)) ∧ at(w(b), (3,1)).  

• Virtually create one network for each cell 

 

• Associate each net output with a unique 
Boolean variable.  

 

• The formula becomes X1 ∧ Y2 ∧ Z9 

 

• Set the weight of each net output as the 
weight of the corresponding Boolean vari
able. 

 

• The loss is the negative logarithm of the 
weighted model count of X1 ∧ Y2 ∧ Z9.  

at(b(k), (2,3)) ↦ X1 

↦ X2 

↦ X9 

at(w(q),(2,3)) 

at(w(b),(2,3)) 

at(b(k), (1,1)) ↦ Y1 

↦ Y2 

↦ Y9 

at(w(q),(1,1)) 

at(w(b),(1,1)) 

at(b(k), (3,1)) ↦ Z1 

↦ Z2 

↦ Z9 

at(w(q),(3,1)) 

at(w(b),(3,1)) 

ce
ll 

(2
,3

) 
ce

ll 
(1

,1
) 

ce
ll
 (
3
,1

) 
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Training: overview 

Loss 
computation 

Differentiatio
n 

𝛻L 

𝝎 

Abduction 

Background  
knowledge 

L 

𝜙 = abduce 𝑇, 𝑜  
safe 
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Training: neural-guided abduction 

Abduction was done so far based only on the target label.   

 

We could consider the neural predictions to narrow down the abductive proofs. 

 

Benefits: improve training efficiency. 
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Neural-guided abduction: example 

 

Recall that when provided with the training pair                                  the proofs were computed b

ased only on the training label (i.e., safe):   

 

 

 

 

 

 

However, if the neural component is confident in recognizing non-empty cells, i.e., it “sees”: 

 

 

 

 

 

then we can exclude all the abductive proofs not abiding this pattern.   

, safe 

♚ 

♘ 

♙ 

♚ 

♖
  

♘ 

♚ 

♕ ♗ 
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Neural-guided abduction: extensions 

To support neural-guided abductio

n, we need to:  

 establish a communication channe

l between the neural and the logic

al components;  

 extend abduction to deal with nois

y or inconsistent neural predictions 

via proximity functions.  

 

saf
e 

Loss 
Comp. 

Differentia
tion 

𝛻L 

𝝎 

Abduction 

Background  
knowledge 

L 

𝜙 

Neural  
predictions  
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Empirical evaluation  

Benchmarks from [6], [2] and chess scenario. 

Competitors: DeepProbLog [2], ABL [12] and NeurASP [13].  
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State of the art 

DeepProbLog. 

 Reduces the problem to learning the parameters of probabilistic logic programs. 

NeurASP 

 Reduces the problem to learning the parameters of probabilistic answer set pro

grams. 

ABL 

 Computes the neural predictions for each element. 

 Obscures subsets of the neural predictions. 

 Abduces the obscured predictions so that the resulting predictions are consiste

nt with the background knowledge. 

 Trains the neural component using obscured and abduced neural predictions. 
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Empirical evaluation 

Results using 3000 training samples and 3 epochs.  
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NeuroLog: efficient caching mechanism 

Efficient caching: 
• Compute an circuit for e

ach abductive formula. 
• Use the compute circuit 

to compute the loss. 
• The number of different 

circuits equals the numb
er of different labels. 

 

Loss 
computation 

Differentiation 
𝛻L 

𝝎 

Abduction 

Background  
knowledge 

L 

abduce 𝑇, 𝑜  
safe 

⊗ 

⊗ 

Arithmetic circuit  
computation 
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NeuroLog vs DeepProbLog and NeurASP 

ADD2x2 OPERATOR2x2 APPLY2x2 DBA(n) 

MATH(5) MEMBER(n) PATH(n) CHESS-?(n) 

Results using 3000 training samples and 3 epochs.  
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NeuroLog vs ABL 

ADD2x2 APPLY2x2 DBA(n) MATH(3) 

MATH(5) MEMBER(n) CHESS-BSV(n) CHESS-ISK(n) 

Results using 3000 training samples and 3 epochs.  
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Summary 

Compositional: users can plug in nets and logic theories of interest, e.g., non-monotoni

c, probabilistic, action. 

Natural integration of neural predictions during the training process. 

Outperforms state of the art in terms of training time and efficiency.  
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