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. State of the art SAMSUNG Research

> Imposes restrictions on the syntax and the semantics of the logical theories:
= [5] translates acyclic or propositional theories to neural networks.
= [6] replaces logical computations by differentiable functions.

» [2,4] adopt theories with interpretations taking continuous values, e.g., fuzzy logic, probabilistic logic.

> Depends on the semantics and the complexity of the specific theory.
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. Objectives o

> Develop a compositional framework in which users can plug in any logical theory and
any neural component of interest.

> Benefits:
= Control the inference cost.

= Control the expressive power of the theory (e.g., support for non-monotonic theories not supported by
PLP-based neural-symbolic frameworks as [2]).

= Support for techniques coming from the learning theory community (e.g., implicit learning [9]).
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r Contributions searc

> A framework supporting those properties [1].

> Beyond the benefits mentioned before, compositionality allows integrating in a natural

way the predictions of the neural component during the training process as opposed to
prior art, e.g., [2].

> Compositionality is achieved via symbolic modules offering the following interfaces:
= deduction, or forward inference; and

= abauction, through which one computes (i.e., abduces) the inputs to the symbolic module that would d
educe a given output.
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> Integrate a symbolic module adopting a theory T and computing a function s(-) on top
of a neural module computing a function n(.).

Neural module Symbolic module
Translator

—— n: X = [0,1]%

r:[0,1]% - A

A

A 4

S:A -0

v

> The translator respects the semantics of the theory, e.g., if T is probabilistic, then each f
act is provided along with its confidence/probability.

> Assumptions:
» closed-world assumption;

» the semantics of the neural outputs is known.



' Setting: inference

Neural module

nx)= w

Translator
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Symbolic module

r(w) =4 |

r

deduce(T, 4)




' Setting: training SAMSUNG Research

> Goal: given training samples of the form (x, 0), train the neural component.

Neural module Symbolic module
Translator

— 7 n g r > S

v
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: chess

safe :—- placed(Zl), movable(Zl).
draw :- placed(Zl), \+attacked(Zl), ‘+movable(Zl).
mate :- placed(Zl), attacked(Zl), \+movable(Zl).
e ———— placed(Z1) :- pos(Zl), at(b(k),Z1l), pos(Z2), pos(Z3), Z2\=Z3,
piece (w(P2)), at(w(P2),Z2), piece(w(P3)), at(w(P3),Z3).
movable (Z1) :- pos(Z2), reached(Z2,k,Z21l), \+attacked(Z2).
attacked(Z2) :- pos(Z3), piece(w(P)), at(w(P),Z3), reached(22,P,Z3).
= reached ((X,Y),k, (PX,PY)) :- abs(X,PX,DX), 1>=DX, abs(Y,PY,DY),
1>=DY¥, sum(DX,DY,S), 0<S.
> reached((X,Y),q, (PX,PY)) :- reached((X,Y),r, (PX,PY)).
reached((X,Y),q, (PX,PY)) :- reached((X,Y),b, (PX,PY)).
ic :- piece(P), at(P,21l), at(P,22), Z1\=Z2.
ic :- piece(Pl), piece(P2), at(Pl,Z), at(P2,Z), Pl\=P2.
\. S ic :- at(b(k),21l), at(w(k),Z2), reached(Zl,k,Z2).
ic :- piece(b(Pl)), at(b(Pl),Zl), piece(b(P2)), at(b(P2),Z2), Z1\=EZ2.
ic :- piece(w(P1l)), at(w(P1l),Zl), piece(w(P2)), at(w(P2),Z2),

piece(w(P3)), at(w(P3),23), Z1\=22, Z2\=23, Z3\=Z1.

> Given an image of a chessboard and the status of the black king, learn the weights of t
he neural component.
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. Training: high-level idea

> Given the target label 0 compute a formula representing what the neural component sh
ould output in order to get the desired output after reasoning.

> The computation of the formula is done via abduction
> Use the computed formula to train the neural component.

Neural module Symbolic module
Translator

¢
— n > Tr g S
L abduce(T,0) «—

v




'Training: how do the training formulas look like? PIMISTNG Ressaren

> If we want the output to be , the logical component should be provided with the f
ollowing chessboards:

at(b(k), (2,3))

at(empty, (3,2))

at(w(q), (1,1)) at(w(b), (3,1))

at(b(k), (2,3)) A at(w(q), (1,1)) A at(w(b), (3,1)) A at(empty, (1,2)) A... Aat(empty, (3,2))
at(w(b), (2,3)) Aat(w(r), (1,1)) A at(w(n), (3,1)) Aat(empty, (1,2)) A... Aat(empty, (3,2)) V

at(w(b), (2,3)) A at(w(p), (1,1)) A at(w(n), (2,2)) A atlempty,(1,2)) A ... Aat(empty, (3,2)) V
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. Abduction e

> Given:

= 3 set of rules P

a set of abducible predicates A— data that is given as part of the input to the theory—
a set of integrity constraints IC

a user query Q

find a formula A over of facts over A, such that
= PUAEQ
» PUAEIC
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r Training the neural component using formulas

> The loss function must show how close —semantically~ are the outputs of the nets to th
e formula we found via abduction.

> We use weighted model counting [11].
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r Weighted model counting

> Consider a propositional formula ¢, where each variable X in ¢ is associated with a wei
ght w(X) in [0,1].

> A satisfying assignment o of ¢ is a mapping of the variables in ¢ to T or L, that makes
¢ true.

> The weight of a satisfying assignment ¢ is defined as

1_[ w(X) X 1_[ 1—-w(X)

XEP|X=T XeEP|X=1

> The weighted model count of ¢ is the sum of the weights of all satisfying assignments of ¢.



. Weighted model counting SAMSUNG Research

¢ — XV Y X Y ¢ Weight of assignment
w={X09Y 01} 0 0 [ (1-w©X)x(1-w())=0.1x%09

0 1 0

1 0 1 w(X) X (1—w(Y)) =0.9x0.9

1 1 1 w(X) X w(¥) = 0.9 x 0.1
p=XV-aY X Y ¢ Weight of assignment
w={X+r01Y+ 09} 0 0 L (1-wX) x(1-w())=09x0.1

0 1 0

1 0 1 w(X) X (1—w(Y)) =0.1x0.1

1 1 1 wX) xw()=0.1x0.9
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'Tralnlng: an example

> Consider the formula at(b(k), (2,3)) A at(w(q), (1,1)) A at(w(b), (3,1)).

at(b(k), (2,3)) = X «  Virtually create one network for each cell
ﬂ at(w(q),(2,3)) - X,

at(w(b),(2,3)) - X, » Associate each net output with a unique
Boolean variable.

= at(b(k), (1,1)) Y,
< ﬂvﬂ at(w(q),(1,1)) - Y, « The formula becomes X; AY, A Z,

at(w(b),(1,1)) = Y « Set the weight of each net output as the
weight of the corresponding Boolean vari

~ at(b(k), (3,1)) - 7, able.
@) ﬂ at(w(q),(3,1) - 7,
T at(w(b),(3.1)) -7, » The loss is the negative logarithm of the

weighted model count of X; A Y, A Z.
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r Training: neural-guided abduction

> Abduction was done so far based only on the target label.
> We could consider the neural predictions to narrow down the abductive proofs.

> Benefits: improve training efficiency.



' Neural-guided abduction: example SAMSUNG Research

N &
> Recall that when provided with the training pair "‘
ased only on the training label (i.e., ):

; the proofs were computed b

> However, if the neural component is co ognizing non-empty cells, i.e., it “sees™:

then we can exclude all the abductive proofs not abiding this pattern.



' Neural-guided abduction: extensions

> To support neural-guided abductio
n, we need to:

= establish a communication channe
| between the neural and the logic
al components;

= extend abduction to deal with nois
y or inconsistent neural predictions
via proximity functions.
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' Empirical evaluation

> Benchmarks from [6], [2] and chess scenario.
> Competitors: DeepProbLog [2], ABL [12] and NeurASP [13].
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r State of the art SAMSUNG Research

> DeepProblLog.

= Reduces the problem to learning the parameters of probabilistic logic programs.
> NeurASP

» Reduces the problem to learning the parameters of probabilistic answer set pro
grams.
> ABL

= Computes the neural predictions for each element.
= Obscures subsets of the neural predictions.

= Abduces the obscured predictions so that the resulting predictions are consiste
nt with the background knowledge.

= Trains the neural component using obscured and abduced neural predictions.

21



' Empirical evaluation

SAMSUNG Research

ADD2x2  OPERATOR2x2 APPLY2x2  DBA(5) MATH(3) MATH(5)

accur % NLoG 91.7+0.7 90.8 £0.8 1000 95.0+0.2 95.0+1.2 922409

accur % DLOG 88.4+2.5 86.9 £ 1.0 100 £+0 95.6+1.8 934+14 timeout

accur % ABL 755+ 34 timeout 88.9+13.1 79+£128 69.7+6.2 6.1 £2.8

accur % NASP 89.5+ 1.8 timeout 76.5+0.1 948+18 27.5+34 18.2+33.5

time (s) NLOG 531 +12 565 + 36 228 + 11 307+ 51 472+ 15 900 + 71

time (s) DLoG 1035471 8982 + 69 586 £ 9 4203 £8 1649 £ 301 timeout

time (s) ABL 1524 4100 timeout 1668 =30 1904492 1903 +17 2440+ 13

time (s) NASP 356 +4 timeout 454 + 652 193 £ 2 125 +6 217+ 3

PATH(4) PATH(6) MEMBER(3) MEMBER(5) CHESS-BSV(3) CHESS-ISK(3) CHESS-NGA(3)

accur % NLoG 974+14 972+1.1 96.9+04 95.4+1.2 94.1 £ 0.8 93.9+1.0 92.7+1.6
accur % DLOG timeout timeout 96.3 £0.3 timeout n/a n/a n/a
accur % ABL timeout timeout 55.3£3.9 49.0 £ 0.1 0.3£0.2 44.3 £ 7.1 n/a
accur % NASP timeout timeout 94.8 +1.3 timeout timeout 19.7£6.3 n/a
time (s) NLOG 958 =89 2576 £ 14 333 £ 23 408 + 18 3576 + 28 964 £+ 15 2189 + 86
time (s) DLOG timeout timeout 2218 + 211 timeout n/a n/a n/a
time (s) ABL timeout timeout 1392 £8 1862 £ 28 9436 £+ 169 7527 4+ 322 n/a
time (s) NASP timeout timeout 325 +3 timeout timeout 787 £+ 307 n/a

Results using 3000 training samples and 3 epochs.

22



SAMSUNG Research

' NeurolLog: efficient caching mechanism

( JEER Efficient caching:
] « Compute an circuit for e
0l . v [ Oifferentiation ] ach abductive formula.
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. NeuroLog vs DeepProbLog and NeurASP

ADD2x2
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Results using 3000 training samples and 3 epochs.
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NeurolLog vs ABL
ADD2x2 APPLY2x2 DBA(N) MATH(3)
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Results using 3000 training samples and 3 epochs.
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r Summary

> Compositional: users can plug in nets and logic theories of interest, e.g., non-monotoni
¢, probabilistic, action.

> Natural integration of neural predictions during the training process.

> Outperforms state of the art in terms of training time and efficiency.

26
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